On the open set condition for self-similar fractals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Decidability on Dube's Self-similar Fractals

Dube proved some undecidability on self-affine fractals. In this paper, we obtain the decidability for self-similar fractal of Dube’s type. In fact, we prove that the following problems are decidable to test if the Hausdorff dimension of a given Dube’s self-similar set is equal to its similarity dimension, and to test if a given Dube’s self-similar set satisfies the strong separation condition.

متن کامل

Tube Formulas for Self-Similar Fractals

Tube formulas (by which we mean an explicit formula for the volume of an (inner) ε-neighbourhood of a subset of a suitable metric space) have been used in many situations to study properties of the subset. For smooth submanifolds of Euclidean space, this includes Weyl’s celebrated results on spectral asymptotics, and the subsequent relation between curvature and spectrum. Additionally, a tube f...

متن کامل

Self-similar Sets with an Open Set Condition and Great Variety of Overlaps

For a very simple family of self-similar sets with two pieces, we prove, using a technique of Solomyak, that the intersection of the pieces can be a Cantor set with any dimension in [0, 0.2] as well as a finite set of any cardinality 2m. The main point is that the open set condition is fulfilled for all these examples.

متن کامل

The Resolvent Kernel for Pcf Self-similar Fractals

For the Laplacian ∆ defined on a p.c.f. self-similar fractal, we give an explicit formula for the resolvent kernel of the Laplacian with Dirichlet boundary conditions, and also with Neumann boundary conditions. That is, we construct a symmetric function G(λ) which solves (λI − ∆)−1 f (x) = ∫ G(λ)(x, y) f (y) dμ(y). The method is similar to Kigami’s construction of the Green kernel in [Kig01, §3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2005

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-05-08300-0